174 research outputs found

    Heavy metals in agricultural soils of the European Union with implications for food safety

    Get PDF
    Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements fromapproximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level.While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000 km2 needs local assessment and eventual remediation action

    Towards a Reproducible Pan-European Soil Erosion Risk Assessment - RUSLE

    Get PDF
    Soil is a valuable, non-renewable natural resource that offers a multitude of ecosystems goods and services. Given the increasing threat of soil erosion in Europe and the implications this has on future food security and water quality, it is important that land managers and decision makers are provided with accurate and appropriate information on the areas more prone to erosion phenomena. The present study shows an attempt to locate, at regional scale, the most sensitive areas and to highlight any changes of soil erosion trends with climate change. The choice of the input datasets is crucial as they have to offer the most homogeneous and complete covering at the pan-European level and to allow the produced information to be harmonized and easily validated. The model is based on available datasets (HWSD, SGDBE, SRTM, CLC and E-OBS) and The Revised Universal Soil Loss Equation (RUSLE) is used because of its flexibility and least data demanding. A significant effort has been made to select the better simplified equations to be used when a strict application of the RUSLE model was not possible. In particular for the computation of the Rainfall Erosivity factor a validation based on measured precipitation time series (having a temporal resolution of 10-15 minutes) has been implemented to be easily reproducible. The validation computational framework is available as free software. Designing the computational modeling architecture with the aim to ease as much as possible the future reuse of the model in analyzing climate change scenarios has also been a challenging goal of the research

    Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe

    Get PDF
    Abstract. Long-term human interactions with the natural landscape have produced a plethora of trends and patterns of environmental disturbances across time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main drivers of pollution, affecting both freshwater and terrestrial ecosystems. We present a statistical approach for investigating the historical and geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon-to-nitrogen ratios in Europe. After the second Industrial Revolution, large swaths of land emerged characterized by different atmospheric deposition patterns caused by industrial activities or intensive agriculture. Nitrogen deposition affects soil C : N ratios in a still recognizable way despite the abatement of oxidized and reduced nitrogen emissions during the last 2 decades. Given a seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing statistical evidence for a rapid response of nature to the chronic nitrogen supply through atmospheric deposition

    Sustainable management of black soils: from practices to policies.

    Get PDF
    Good practices to address sustainable management of black soils; Relevant policies for the protection, conservation and/or sustainable management of black soils

    Improving soil and water conservation and ecosystem services by sustainable soil management practices: From a global to an italian soil partnership

    Get PDF
    The UN Sustainable Development Goals (SDGs) identify the need to restore degraded soils in order to improve productivity and the provision of ecosystem services. The aim is to support food production, store and supply clean water, conserve biodiversity, sequester carbon, and improve soil resilience in a context of climate change. Within this framework, in order to achieve the SDGs and to correct land management in the long-term, soil management is considered mandatory. The reduction of land degradation should be based on various sustainable soil management practices that improve and maintain soil organic matter levels, increase water infiltration, and improve soil water management. This technical review-a policy paper-summarizes the sustainable and territorial impact of soil degradation, including soil water erosion, from the global level to the European and National levels. Furthermore, with the aim of sharing ongoing soil and water management actions, instruments, and initiatives, we provide information on soil and water conservation activities and prospects in Italy

    Soil conservation and sustainable development goals(SDGs) achievement in Europe and central Asia: Which role for the European soil partnership?

    Get PDF
    Voluntary soil protection measures are not sufficient to achieve sustainable soil management at a global scale. Additionally, binding soil protection legislation at national and international levels has also proved to be insufficient for the effective protection of this almost non-renewable natural resource. The European Soil Partnership (ESP) and its sub-regional partnerships (Eurasian Sub-Regional Soil Partnership, Alpine Soil Partnership) were established in the context of FAO's Global Soil Partnership (GSP) with the mission to facilitate and contribute to the exchange of knowledge and technologies related to soils, to develop dialogue and to raise awareness for the need to establish a binding global agreement for sustainable soil management. The ESP has taken a role of an umbrella network covering countries in Europe and Central Asia. It aims to improve the dialogue in the whole region and has encouraged establishing goals that would promote sustainable soil management, taking into account various national and local approaches and priorities, as well as cultural specificities. The ESP first regional implementation plan for the 2017–2020 period was adopted and implemented along the five GSP pillars of action. Building on the experience of the last four years, this study demonstrates that establishing sub-regional and national partnerships is an additional step in a concrete sustainable soil management implementation process. It also suggests that a complementary approach between legal instruments and voluntary initiatives linked to the development of efficient communication and strong commitment is the key to success

    The business case for soil

    Get PDF
    corecore